Numerical solutions of the generalized Kuramoto–Sivashinsky equation by Chebyshev spectral collocation methods
نویسندگان
چکیده
منابع مشابه
Chebyshev Spectral Collocation Method for Computing Numerical Solution of Telegraph Equation
In this paper, the Chebyshev spectral collocation method(CSCM) for one-dimensional linear hyperbolic telegraph equation is presented. Chebyshev spectral collocation method have become very useful in providing highly accurate solutions to partial differential equations. A straightforward implementation of these methods involves the use of spectral differentiation matrices. Firstly, we transform ...
متن کاملChebyshev Collocation Spectral Method for Solving the RLW Equation
A spectral solution of the RLW equation based on collocation method using Chebyshev polynomials as a basis for the approximate solution is proposed. Test problems, including the motion of a single solitary wave with different amplitudes are used to validate this algorithm which is found to be more accurate than previous ones. The interaction of solitary waves is used to discuss the effect of th...
متن کاملchebyshev spectral collocation method for computing numerical solution of telegraph equation
in this paper, the chebyshev spectral collocation method(cscm) for one-dimensional linear hyperbolic telegraph equation is presented. chebyshev spectral collocation method have become very useful in providing highly accurate solutions to partial differential equations. a straightforward implementation of these methods involves the use of spectral differentiation matrices. firstly, we transform ...
متن کاملA Spectral Collocation Method Based on Chebyshev Polynomials for the Generalized Zakharov Equation
In this paper, we use the spectral collocation method based on Chebyshev polynomials for spatial derivatives and fourth order Runge-Kutta (RK) method for time integration to solve the generalized Zakharov equation (GZE). Firstly, theory of application of Chebyshev spectral collocation method on the GZE is presented. This method yields a system of ordinary differential equations (ODEs). Secondly...
متن کاملGeneralized Chebyshev Collocation Method
In this paper, we introduce a generalized Chebyshev collocation method (GCCM) based on the generalized Chebyshev polynomials for solving stiff systems. For employing a technique of the embedded Runge-Kutta method used in explicit schemes, the property of the generalized Chebyshev polynomials is used, in which the nodes for the higher degree polynomial are overlapped with those for the lower deg...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computers & Mathematics with Applications
سال: 2008
ISSN: 0898-1221
DOI: 10.1016/j.camwa.2008.03.013